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M-COVARIANCE MATRIX OF TRIVARIATE
NORMAL DISTRIBUTION IN X , Y , Z
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Fig. 1 Effect of correlation on error volume approxima-
tion.

In order for the density function (1) to be defined, |M|>0;
hence it remains only to show that the expression involving
the p's in parentheses in (3) is nonnegative. This follows
from the inequalities

pxy2 + Pxz2 + Pyz2 > pxy2 + Pxz2 >

have any pronounced advantage over a more obvious method
which makes use of the equations of variation directly and
thereby avoids some of the rather confusing aspects of the
adjoint equations. The special two-point boundary value
problem considered is that of solving the equations

fr=p(x\ ...,xn, 0
subject to the initial conditions

s'tfb) = o<
and the final (ti > fo) conditions

i = 1, . . . , n ) (1)

'* (i = 1, . . . , r) (2)

Xi(tl) = ft* (f = r + 1, . . . , n) (3)

Let y*(t) be the solution (a set of functions) of (1) subject
to the initial conditions

y^to) = a{ (i = 1, . . . , n)
where ar+1, . . . , an are estimates of the unspecified initial
conditions which will produce the final conditions (3), and
suppose that the final values are found actually to be

«if
x>(t) = y*(t)

the equations of variation are
(4)

(5)

where use is made of the property that any correlation coeffi-
cient, by definition, cannot exceed unity in absolute value.
Combining the first and last sections of (4),

Pxv
2 + pxS + py? - 2pxypxzpyz > 0 (5)

and, since \M\ > 0, it is concluded from (3) that

<rxx<rvv(ru > \M\ (6)
To give an idea of how the degree of correlation between

the three error variables affects the error volumes previously
described, the ratio \M\ll2/(<rxx(Tyy(rZiS)112 obtained from (3) is
plotted in Fig. 1 as a function of (positive) correlation coeffi-
cient. This ratio is equivalently the ratio of error volumes
calculated with and without the covariance elements included
in M. For simplicity, the three paired correlation coefficients
Pxy, PXZ, pyz are taken here as equal, but the effect of unequal
coefficients can be roughly inferred from these results. Figure
1 indicates that a relatively high degree of correlation must
exist between the error variables before the error volume is
significantly altered from its approximate value obtained by
considering the errors to be independent. For example, a
common correlation coefficient of 0.5 reduces the actual error
volume to about 0.7 of its approximate value.

Use of the Adjoint System in the
Solution of Two-Point Boundary Value

Problems

OSCAR T. SCHULTZ*
Sperry Gyroscope Company, Great Neck, N. Y.

SOME papers1'2 have appeared recently on the use of the
adjoint system in solving a two-point boundary value

problem for a system of n first order differential equations.
While the method described is workable, it does not seem to
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where /,•* denotes the partial derivative of f*(xl, . . . , xn, t)
with respect to x* after the solution functions y*(f) have been
substituted fog the xi

} so that the /,•* are known functions
of t. The initial and final conditions to be imposed on the
solution of (5) are found from (4) to be

{<(*>) = 0 ' (t = 1, . . . , r) (6)
and

£ft) = ft* - c< = 0* (f = r + 1, . . . , n) (7)
where the 0* are known. The problem of solving (5) subject
to (6) and (7) has the same character as that of solving (1)
subject to (2) and (3), but the linearity of Eq. (5) resulting
from the neglect of higher order terms can be exploited to
obtain a solution. Once the solution has been obtained, the
values for i = r + 1, . . ., n of £*'(fo) can be found and the un-
specified initial values for i — r + 1, . . . , n of £*0o) are
approximately a* + ^(to). A new solution yi is then obtained
with these estimates, and the entire process is repeated until
convergence is obtained.

Instead of solving Eqs. (5-7) directly, the method of ad-
joints introduces a new set of variables A; satisfying the ad-
joint equations

X* = - (8)

and it is easily seen that any pair of solutions of (5) and (8)
satisfies the relation

= Z (9)

Now consider n — r solutions Xt*(£) for k = r + I , . . . , n of
the adjoint equations subject to the final conditions

X<*&) = 0 (i = 1, . . . , r)
Xi*(0 = W (i = r + 1, . . . , n)

which define the values A;fc(£0). One can now write n — r
different versions of Eq. (9)

E = r + l , . . . , n ) (10)
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If £''(0 in all of Eqs. (10) is the solution of (5) subject to (6)
and (7), all values in the n — r Eqs. (10) are known except
£»'(fo) for i = r + I, . . . , n, and hence these values can be
found.

The same result can be obtained with very little more labor
without the use of the adjoint equations. Let £**(0 for k =
r + 1, . . . , nbe n — r solutions of (5) subject to the initial
conditions

fcb'-(fo) = 0
f*'(fe) = Ab<

These solutions determine the values
are any n — r constants

(i = 1, . . . , r)
i = r + 1, . . . , w)

). If // + l, • • • > Mn

?(0 = Mr + '& + i*(<) + • - - + /*"*«*(*) (ID
is a solution of (5) satisfying (6). If this solution is also to
satisfy (7)

These n — r equations can be solved for // + 1
) . . . , jun, the

solution values substituted in (11), and then putting t = t$
for i = r + 1, . . . , n yields the required values of £*"(fo).
Thus, the steps in this method are exactly parallel to those
in the adjoint method except that here one additional com-
putation (equivalent to a matrix X vector multiplication)
is necessary after the simultaneous linear equations have
been solved. It hardly seems worth the effort of introducing
the adjoint system to avoid this simple step, especially in an
exposition of principles.

The first use of the adjoint system in problems having a
superficial resemblance to that considered here was by Bliss3- 4

hi his work in ballistics during WW I, but in, these applica-
tions it serves a much more useful purpose. A simple ex-
ample of this kind is that in which the £*(£) are variations
from a normal trajectory due to abnormal initial conditions
and an expression for the final value of just one of the £*(0
is required, in terms of arbitrary initial^ variations of all of the
£*(£). The coefficients in this expression can be obtained with
only one integration of the adjoint equations, whereas if the
same expression were to be obtained by integrating the
equations of variation, n integrations would be required.
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Optimum Planar Circular Orbits
Transfer

ANDREW H. JAZWINSKI*
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Introduction

A RECENT note1 points out that the solution obtained by
Jurovics and Mclntyre2 for the minimum time transfer

of a constant thrust acceleration vehicle between two co-
planar earth circular orbits is in error. It is apparent from
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the lengthy footnote in Jurovics and Mclntyre's paper that
they had considerable difficulties in meeting boundary condi-
tions. Their method of solving the variational boundary
value problem has been developed independently by this
author3~5 and successfully applied to the problem at hand
as well as many other problems. Convergence has been ex-
cellent in all problems solved. These results demonstrate
that Jurovics and Mclntyre's solution is erroneous (the opti-
mal control is continuous).

It is the purpose of this note to exhibit a continuous opti-
mal control for the problem under discussion, which every-
where satisfies the Legendre-Clebsch necessary condition,
and to show that a discontinuous control is nonoptimal.
The results obtained by Jurovics and Mclntyre are not in-
herent to the method of solution used, which is demonstrably
a very good one.

Discussion

The problem was formulated in terms of the (^,7, h) state,
where v is the total velocity, 7 the local flight path angle, and
h the altitude. Control is embodied in a, the angle between
the velocity and thrust vectors. A minimum time trans-
fer from a 300- to a 1000-statute mile circular earth orbit was
obtained for a vehicle with a constant ratio of (thrust ac-
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Fig. 1 Optimal control.

celeration)/(initial gravitational acceleration) equal to 1.7343.
Pertinent constants are GM (universal gravitational con-
stant X earth mass) = 1.408142 X 1016 ft3/sec2, and R
(earth radius) = 2.09029 X 107 ft. This transfer corresponds
to a ratio of (radial transfer distance)/(initial orbit radius)
equal to 0.164377—very nearly the problem considered by
Jurovics and Mclntyre2 and Greenley.1

The minimum time control obtained is plotted in Fig. 1
as </>, the angle between the local horizontal and the thrust
direction, which is the control considered by Jurovics and
Mclntyre. A ratio of (minimum transfer time)/(time per
rad in initial orbit) equal to 0.612160 is obtained. The
boundary conditions imposed on the variational boundary
value problem were met to seven significant figures.

The control a for this problem may be written in terms of
the Lagrange multipliers

where /*„ is the multiplier associated with the velocity differ-
ential constraint, and AIT is the multiplier associated with the
path angle differential constraint. It is observed that a is
multivalued. The appropriate a may be chosen with the


